Hinweis: Aufgrund von geplanten Wartungsarbeiten werden die Web-Auftritte der TU Dortmund am 17. April 2024, zwischen 18:00 und 20:00 Uhr mehrmals für kurze Zeit nicht erreichbar sein.
Wir bitten dadurch entstandene Unannehmlichkeiten zu entschuldigen und bedanken uns für Ihr Verständnis.
Zum Inhalt
Fakultät Physik

Absence of SO(4) quantum criticality in Dirac semimetals at two-loop order

  • Stamou
Bitte Bildnachweis einfügen


Evidence for relativistic quantum criticality of antiferromagnetism and superconductivity in two-dimensional Dirac fermion systems has been found in large-scale quantum Monte Carlo simulations. However, the corresponding (2+1)-dimensional Gross--Neveu--Yukawa field theory with Nf=2 four-component Dirac fermions coupled to two triplets of order parameters does not exhibit a renormalization group fixed point at one-loop order. Instead, the theory only features a critical point for a large or very small fractional number of fermion flavors Nf, which disappears for a broad range of flavor numbers around the physical case, Nf=2, due to fixed-point annihilation. This raises the question on how to explain the observed scaling collapse in the quantum Monte Carlo data. Here, we extend previous renormalization-group analyses by studying a generalized model at two-loop order in 4−ϵ spacetime dimensions. We determine the ϵ correction to the upper and lower critical flavor numbers for the fixed-point annihilation and find that they both go towards the physical case Nf=2. However, this only happens very slowly, such that an extrapolation to ϵ=1 still suggests the absence of criticality in 2+1 dimensions. Thereby, we consolidate the finding that the continuum field theory does not feature a stable renormalization-group fixed point and no true quantum criticality would be expected for the considered system. We briefly discuss a possible reconciliation in terms of a complex conformal field theory. Further, we also explore the fixed-point structure in an enlarged theory space and identify a candidate stable fixed-point solution.

Zum Paper: